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1
SCHEDULING THREAD EXECUTION BASED
ON THREAD AFFINITY

BACKGROUND

This relates generally graphics processing units.

In many computing platforms, separate central processing
and graphics processing units may be used. Graphics process-
ing tasks may be offloaded from central processors to graph-
ics processors. Graphics processors may perform a number of
specialized tasks including graphics tasks and financial
analysis tasks. Typically where heavy mathematical opera-
tions are involved, tasks may be offloaded to the graphics
processor.

For example, in financial analysis, a Monte Carlo simula-
tion may be performed. A Monte Carlo simulation predicts
option prices based on average prices and variances of stock
prices. Graphics processors may be used to do these simula-
tions using thousands of threads. Generally the sequence of
thread execution is not optimized and is simply taken in a
thread by thread execution order.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a depiction of a graphics processing unit archi-
tecture in accordance with one embodiment;

FIG. 2 is a schematic depiction of an affinity history buffer
for use in the embodiment of FIG. 1;

FIG. 3 is a schematic depiction of an affinity sampling table
for use in connection with the embodiment of FIG. 1;

FIG. 4 is a more detailed depiction of an affinity tracking
buffer;

FIG. 5 is a state diagram for affinity detection in accor-
dance with one embodiment;

FIG. 6 is a schematic depiction of affinity sampling in
accordance with one embodiment;

FIG. 7 is a flow chart for affinity sampling in accordance
with one embodiment;

FIG. 8 is a depiction of affinity sampling states in accor-
dance with one embodiment;

FIG. 9 is a depiction of affinity history buffer updating in
accordance with one embodiment;

FIG. 10 is a flow chart for affinity history updating in
accordance with one embodiment;

FIG. 11 is a schematic depiction of affinity information
output in accordance with one embodiment;

FIG. 12 is a flow chart for affinity information output in
accordance with one embodiment.

DETAILED DESCRIPTION

In accordance with some embodiments, spatial and tem-
porallocality between threads executing on graphics process-
ing units may be analyzed and tracked in order to improve
performance. In some applications where a large number of
threads are executed and those threads use common resources
such as common data, affinity tracking may be used to
improve performance by reducing the cache miss rate and to
more effectively use relatively small-sized caches.

In some embodiments, a task may be broken into a large
number of steps and the task may be repeated for a number of
different cases. By calculating the same step across a number
of'cases, each executed by different groups of threads, affinity
between the thread groups may be used to improve perfor-
mance.

One possible application of affinity analysis is graphics
processing for a Monte Carlo simulation using thousands of
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threads. A large number of threads such as 128 or 256 threads
may be used to calculate each stock option price. A large
number of options may be analyzed, for example 10,000
option prices may be calculated at a time. However, different
options may use the same state inputs that provide a random
number. Thus an opportunity for affinity based performance
improvements may be realized because different groups of
threads may share the use of a common resource, in this case,
a state input. Since graphics processing unit cache size may
be relatively small compared to that of central processing
units, affinity analysis may be particularly amenable to
improving performance in graphics units.

Thus instead of calculating the stock option price, one
option after the other, the option price may be calculated by
breaking the calculation into a plurality of steps and perform-
ing one step across a number of options. Calculating the
option price one after the other may be inefficient because two
groups of threads may access the same data set. Thus through
the use of locality identification and exploitation across
thread groups, performance may be improved, when breaking
up the calculation into a plurality of steps and calculating the
same step for a large number of options.

More specifically, the sequence of thread execution may be
reordered or rescheduled to take advantage of locality
between threads. Again looking at the example of a Monte
Carlo simulation, the simulation calculation may be broken
into about one hundred steps. For one example, the first step
may be done for a first option and then the calculation may be
suspended, followed by doing the first step for a second
option and then suspending it and so on. This may reduce the
amount of information in the caches so that spatial locality
may be used advantageously across thread groups.

As a result cache miss rates may be reduced in some
embodiments. Thus by identifying localities across groups of
threads, performance benefits may be achieved by scheduling
the order of execution of threads to take advantage of locality
between thread groups. Basically, thread groups that have
locality may be executed sequentially.

The same locality benefits may arise in a number of graph-
ics processing tasks, including those generally associated
with pixel shaders, because they require different texture
resources at different parts of the calculations.

Referring to FIG. 1, in accordance with a graphics process-
ing unit throughput computing architecture 10, an active
thread pool 12 may include a number of threads for one single
vector execution unit 13. In other words, each vector execu-
tion unit 13 may include an active thread pool 12. Thus each
vector execution unit may, in one embodiment, be used to
determine an option price for one particular stock.

In accordance with some embodiments of the present
invention, each vector execution unit may include a scheduler
that includes an affinity history buffer 19. The affinity history
buffer may be used for tracking affinity between threads. The
scheduler can use this information to execute threads in an
order that takes advantage of any detected affinity.

Each vector execution unit includes a data level one cache
14, which in turn is connected to any number of higher level
caches including a last level cache (LLC) 16. A memory
controller 18 may be coupled to the data caches.

As used herein, “resource access affinity” or “affinity” is
the result of two different threads using substantially the same
resources so that performance advantages may be obtained by
scheduling the threads that have affinity to be sequential or
substantially sequential. As a result of breaking computing
tasks up and executing them on different threads, temporal
and spatial locality may be lost. By analyzing spatial and
temporal locality, threads may be rescheduled to execute
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sequentially when they have affinity. This may result in
improving the cache hit ratio and memory request coalescing
efficiency. An affinity history bufter detects and tracks domi-
nant resource access affinity.

Thus referring to FIG. 2, a more detailed depiction of the
affinity history buffer 19 shown in FIG. 1 is provided. Thread
lane identifier 20 feeds thread lane identifiers to global thread
lane bitmaps 28 and local thread lane bitmaps 32. Memory
load address buffer 22 provides a load address to a memory
shift register 26. The memory shift register 26 shifts the
memory address in some regular way in order to find memory
addresses that have affinity. The output of the thread lane
bitmap 28 is provided to a memory slice index 30 that also
receives the address shift. The output is a local thread lane
bitmap 32 that forms an affinity sampling table 24.

The output from the local thread lane bitmap 32 is provided
as an affinity entry 36. The affinity entry may be provided to
a thread assigned status register 38 and ultimately to the
thread scheduler or resource allocation logic 40 of the vector
execution unit 13 shown in FIG. 1.

The memory address shift logic 26 shown in FIGS. 2 and 3
may be a configurable bit-wise shift register. The number of
bytes to be shifted and the shift direction may be configured
by a driver 22 (FIG. 3). The driver sets the number of bits
based on available cache resource size and workload access
granularity. Its input is a virtual address of a memory load
operation (blocks 44 and 46 of FIG. 3) from the memory load
address 22 (FIG. 3). Its output is called a memory slice index
30.

Actually, the memory address shift logic may use other
bit-wise operations rather than a normal shift. For example,
for two-dimensional based texture access, a right shifting
operation may be adjusted based on different tiling algo-
rithms. If threads with the same memory slice index, there is
space and/or time locality among those threads. The number
of bits to be shifted determines the tolerance of locality.

The global thread lane bitmap 28 is a register whose bit
number is the same as the active thread pool size. For a given
kernel, if the graphic processing unit hardware’s resource
could maintain forty threads, the register may be five bytes in
length. If the maximum thread number is thirty two, its length
is one word. Its bits are used as a bitmap to map each hardware
thread in a pool. For example, the first thread in a pool is
mapped to a less significant bit. If one bit of the global thread
lane bitmap is set, it stands for a corresponding thread being
passed through affinity sampling procedure and vice versa.

The affinity sampling table 24 (FIG. 3) is a two-dimen-
sional table. For each entry in the table, its index field is a
memory slice index. Its value field is a local thread lane
bitmap. The memory slice index comes from the output of the
memory address shift logic 26. The local thread lane bitmap
is a bitmap treated with the same semantics as the global
thread lane bitmap 28. If one bit of the local thread lane
bitmap is set to one, this means that the corresponding hard-
ware thread’s memory slice index equals to the entry’s index
field. So threads embodying space and/or time locality may
be clustered to the same entry. The value of the local thread
lane bitmap may be interpreted as an affinity identifier as well.
For N elements in the active thread pool, a valid value scope
of affinity identifier is from zero to 2%

The affinity tracking buffer 34 includes two components. A
first component including the affinity entries 36. This is a
buffer designed to track hot affinity identifiers through the
access history. The second component is a thread assigned
status register 38. The input to this subsystem is the affinity
identifier and the output is the hot affinity identifier.
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The affinity tracking buffer 34 is the core unit of this
subsystem. An enlarged view of the affinity tracking buffer is
shown in FIG. 4. It is a fixed size two-dimensional table. Each
entry in the tracking buffer contains one index and two value
fields. The content of the index field is the affinity identifier
66. The first value field is a hit counter that records the
appearance of a given affinity identifier 66 across a series of
sampling. Its initial value is zero if the affinity identifier is
inserted into the table for the first time. The second value is the
previous slot (“PREV SLOT”).

The content of the previous slot represents a slot in the
affinity tracking buffer. For an N slot affinity tracking buffer
design, the previous slot’s value scope is from one to N.

The previous slot is used to set up an ordered linked list in
the affinity tracking buffer. That list is then used to maintain a
two-level priority queue for entry replacement and output.
The first level of priority in this queue is a hit rate. The entry
with the highest value in the hit counter will be least likely to
be replaced and most likely to be outputted to the outside
system. The second level of priority is the lifetime of the
entry. For entries with the same hit count value, the youngest
entry will be the least likely to be replaced and most likely to
be outputted to the outside system. The previous slot value
points to the next hot entry in this linked list. To speed up the
affinity information output, the tail of this linked list is main-
tained. It points to the hottest affinity group index.

Referring to FIG. 5, a state diagram for affinity detection
with the affinity buffer is illustrated. Each iteration includes a
start state 70, an affinity sampling state 72 where a memory
instruction may be retired from a different thread, an affinity
history updating state 74 that receives all threads updated
table once and only once and affinity state output state as well
as a stop state. The start state is a start point of the state
machine. The content in the affinity sampling table is local to
the iteration and will be set to zero in the start state. That
action includes activities of making bits, flushing to zero for
the affinity sample table and the global thread lane bitmap. In
the affinity sampling state 72, the affinity sampling subsystem
clusters affinity identifiers for the active thread pool. For each
thread in the pool, the thread is sampled once and only once.
The affinity history updating state 74 identifies and tracks a
dominant affinity identifier of the current application. Its con-
tent is preserved across iterations. The state may be switched
to an affinity information output stage 76 during which the hot
affinity identifier is outputted.

The affinity sampling state 72 is shown in more detail in
FIG. 6. Using the example where the thread pool has M
elements, thread zero is the first thread being sampled, the
number “1” is shifted to the left zero times and the result
would be to do a bit-wise AND operation with the value of the
global thread lane bitmap. The result is zero which stands for
thread zero is valid for sampling. The thread identifier and
virtual address of the load operation is fed into the subsystem.
Assuming a granularity of 4 K bytes for identity affinity
access, address shifting logic is configured to shift 12 bits.
The access address for thread zero is 0x0010f00c. The shift-
ing result is 0x0010f. The subsystem search is through the
affinity sampling table and finds a zero entry. A new entry is
allocated for 0x0010f and is set to the corresponding bit of
thread zero in the local thread lane bitmap field. Also, the
corresponding bit in the global thread lane bitmap is set.
Similar steps are carried out for the next thread, thread 1
which is illustrated in FIG. 6, Step 2.

Referring to the sequence 90 shown in FIG. 7, the sequence
may be implemented in hardware, software and/or firmware.
In software and firmware embodiments it may be imple-
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mented by computer readable instructions stored in a non-
transitory computer readable medium.

The sequence begins in block 92 when a memory instruc-
tion is retired. Then at block 94 a tuple of the thread identifier
and the memory address is created. A check at diamond 96
determines whether the logical AND result of the tuple is
equal to zero. If so, the flow ends. Otherwise at block 98, the
address is mapped to a memory slice index by a mapping
function.

Then at block 100, the current memory slice index is
searched in the affinity sampling table. If the entry exists as
determined in diamond 102, then the flow goes to step 106.
Otherwise a new entry is allocated for the current memory
slice index at block 104. In block 106, a local thread lane
bitmap field is updated with the result of a logic or operation
between its old value and the tuple. Then in block 108 the
global thread bitmap is updated with the result of a logic or
operation between its old value and the tuple.

When affinity sampling is done, there are three possible
statuses in the affinity sampling table, as shown in FIG. 8. For
category 1 there is only one entry in the sampling table and it
is called strong affinity. For category 2, there is at least one
entry whose local thread lane bitmap is set more than once
and is called significant affinity. In category 3, the entry
number equals to the active thread pool size and this is called
no affinity. For strong and significant affinity categories, a
subsystem outputs a sampling result to the affinity tracking
subsystem.

The affinity tracking buffer update corresponding to state
74 in FIG. 5 works like a cache. The affinity tracking buffer
tracks hot affinity identifiers. Assuming there are four slots in
the affinity tracking buffer before the first buffer updating
takes place, there is no entry in the buffer, and all four slots are
available for insert. After the first affinity sampling is done,
the affinity identifier 0x3800 and Oxf is identified and filled
into slots one and two. In the second affinity sampling stage
the affinity identifier OXAADA and 0x5525 is found and
filled. From then on, there is no empty slot. The tail point to
slot 4, is the most recently visited. The status of the tracking
buffer is shown as status 1 in FIG. 9.

When the sampling table is ready for output for a third
time, 0XAADA and 0x5525 is fed and the corresponding hit
counters are increased which is shown in status 2 of FIG. 9.
When the fourth sampling result is ready (identifiers 0x360
and 0x7) there is no empty slot available. The buffer elimi-
nates the oldest entry with the lowest hit count, which in this
case 0x3800 and OxF in slots 1 and 2. The status is shown as
status 3 in FIG. 9. The detailed control flow is shown in FIG.
10.

FIG. 10 illustrates a sequence which may be implemented
in hardware, software, and/or firmware. In software and firm-
ware embodiments, it may be implemented by computer
readable instructions stored in a non-transitory computer
readable medium such as an optical, magnetic or semicon-
ductor memory.

In order to update the affinity history buffer, the flow starts
by determining whether there were more entries in affinity
sampling table at diamond 110. If so, the corresponding local
thread lane bitmap of that entry is obtained as indicated in
block 112. The number of ones in the bitmap is counted in
block 114. If that number is greater than one as determined in
diamond 116, the value of the bitmap in the affinity history
buffer is searched in block 118.

A check at diamond 120 finds the corresponding entry. If
so, the hit count is increased in block 122. If not, a check at
diamond 124 determines there is an empty slot available. If
so, an affinity entry record is created in the target slot as
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6

indicated in block 128. Otherwise a slot is found for replacing
based on the least recently used entry (block 124).

The affinity tracking buffer help puts affinity information if
needed. The index field of each entry describes an affinity
thread group and a bitmap. An example of the affinity infor-
mation output is shown in FIG. 11.

Before the output starts, the thread assigns status register is
flush to zero. The affinity tracking buffer outputs the entry
OxAADA as a first candidate pointed to by the tail. The
OxAADA does a bit-wise and operation against a thread
assigned status register. The result is zero meaning that all
threads in the bitmap of OXAADA are valid. The thread
assigned status register is updated with the result of the bit-
wise OR operation between the old value and OxAADA.
Then 0x5525 is outputted in the same way. The output pro-
cedure stops on the third candidate due to one of its threads
being already outputted. A detailed chart is shown in FIG. 12.

Referring to FIG. 12, an affinity information output
sequence may be implemented in software, firmware and/or
hardware. In software and firmware embodiments it may be
implemented by computer executed instruction stored in a
non-transitory computer readable medium such as a semicon-
ductor, optical or magnetic memory.

The sequence starts at block 130 by doing a bit-wise AND
operation between the current affinity identifier and the thread
assigned status register. If the result is equal to zero as deter-
mined indiamond 132, the affinity identifier is output in block
134. In block 136 the thread assigned status register value is
updated with the result of the bit-wise OR operation between
its old value and the current affinity identifier. Then in block
138 the current entry is replaced with the one pointed to by
previous slot.

The graphics processing techniques described herein may
be implemented in various hardware architectures. For
example, graphics functionality may be integrated within a
chipset. Alternatively, a discrete graphics processor may be
used. As still another embodiment, the graphics functions
may be implemented by a general purpose processor, includ-
ing a multicore processor.

References throughout this specification to “one embodi-
ment” or “an embodiment” mean that a particular feature,
structure, or characteristic described in connection with the
embodiment is included in at least one implementation
encompassed within the present invention. Thus, appearances
of the phrase “one embodiment” or “in an embodiment” are
not necessarily referring to the same embodiment. Further-
more, the particular features, structures, or characteristics
may be instituted in other suitable forms other than the par-
ticular embodiment illustrated and all such forms may be
encompassed within the claims of the present application.

While the present invention has been described with
respect to a limited number of embodiments, those skilled in
the art will appreciate numerous modifications and variations
therefrom. It is intended that the appended claims cover all
such modifications and variations as fall within the true spirit
and scope of this present invention.

What is claimed is:

1. A method comprising:

breaking a repetitive graphics processing task into steps,
wherein one of the steps is performed in more than one
task;

performing the one step across at least two tasks;

identifying affinities between said at least two tasks using
address shift logic;
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using a driver to configure the address shift logic, said
driver to set the number of bits to be shifted based on
available cache size, said shift logic to output a memory
slice index; and

ordering threads performing said at least two tasks to take

advantage of affinity between said at least two tasks.

2. The method of claim 1 including denominating threads
with the same memory slice index as having affinity.

3. The method of claim 2 including setting up a two-
dimensional affinity sampling table whose index field is the
memory slice index and whose value field is a local thread
lane bitmap that indicates whether the memory slice index
equals an entry’s index field.

4. The method of claim 3 including clustering threads with
affinity in one entry in the table.

5. The method of claim 1 including tracking affinity in a
buffer that establishes an ordered linked list to maintain a
two-level priority queue for entry replacement.

6. A non-transitory computer readable medium storing
instructions to enable a computer to:

break a repetitive graphics processing task into steps,

wherein one of the steps is performed in more than one
task;

perform the one step across at least two tasks;

identify affinities between said at least two tasks using

address sift logic;

use a driver to configure the address shift logic, said driver

to set the number of bits to be shifted based on available
cache size, said shift logic to output a memory slice
index; and

order threads performing said at least two tasks to take

advantage of affinity between said at least two tasks.

7. The medium of claim 6 further storing instructions to
denominate threads with the same memory slice index as
having affinity.
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8. The medium of claim 7 further storing instructions to set
up a two-dimensional affinity sampling table whose index
field is the memory slice index and whose value field is alocal
thread lane bitmap that indicates whether the memory slice
index equals an entry’s index field.

9. The medium of claim 8 further storing instructions to
address cluster threads with affinity in one entry in the table.

10. The medium of claim 6 further storing instructions to
track affinity in a buffer that establishes an ordered linked list
to maintain a two-level priority queue for entry replacement.

11. An apparatus comprising:

a controller to break a repetitive graphics processing task
into steps, wherein one of the steps is performed in more
than one task, perform the one step across at least two
tasks, identify affinities between said at least two tasks
using address shift logic, use a driver to configure the
address shift logic, said driver to set the number of bits to
be shifted based on available cache size, said shift logic
to output a memory slice index, and order threads per-
forming said at least two tasks to take advantage of
affinity between said at least two tasks; and

a memory coupled to said controller.

12. The apparatus of claim 11 said controller to denominate
threads with the same memory slice index as having affinity.

13. The apparatus of claim 12 said controller to set up a
two-dimensional affinity sampling table whose index field is
the memory slice index and whose value field is a local thread
lane bitmap that indicates whether the memory slice index
equals an entry’s index field.

14. The apparatus of claim 13 said controller to cluster
threads with affinity in one entry in the table.

15. The apparatus of claim 11 said controller to track affin-
ity in a buffer that establishes an ordered linked list to main-
tain a two-level priority queue for entry replacement.
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